DeepHolo: Recognizing 3D Objects using a Binary-weighted Computer-Generated Hologram

Naoya Muramatsu
University of Tsukuba
Pixie Dust Technologies, Inc.
sh.mn.nat@gmail.com

Chun Wei Ooi
University of Tsukuba
made3102@gmail.com

Yuta Itoh
University of Tsukuba
s1711428@s.tsukuba.ac.jp

Yoichi Ochiai
University of Tsukuba
Pixie Dust Technologies, Inc.
wizard@slis.tsukuba.ac.jp

Figure 1: Framework of DeepHolo network.

ABSTRACT

Three-dimensions (3D) models contain a wealth of information about every object in our universe. However, it is difficult to semantically recognize the media forms, even when they featured in simplest form of objects. We propose the DeepHolo network using binary-weighted computer-generated holograms (CGHs) reconstructed from point cloud models. This neural network facilitates manipulation of 3D point cloud form, and allows it to be processed as Two-dimensions (2D) data. We construct the network using hologram data, which is simpler and contains smaller volume of information than their point cloud data(PCD) counterpart, leading to a smaller number of parameters required. The Deep Neural Network (DNN) is trained to recognize holograms of 3D objects, so that it resembles a point attributed to a 3D model of a similar object to the one depicted in the hologram. DeepHolo network allows high precision object recognition, as well as processing 3D data using much lesser computer resources. We evaluate our method on a recognition task space efficiency, and outperforming state-of-the-art methods.

CCS CONCEPTS

- Computing methodologies → Classification and regression trees;

KEYWORDS

object recognition, convolutional neural network, computer-generated hologram

ACM Reference Format:

1 INTRODUCTION

The understanding of 3D environment is an important element of the latest computer vision research ranging from automotive to autonomous robotic application scenarios. In order to handle 3D information, however, large amount of memory is required.

In this paper, we propose a simple and effective neural network using computer-generated holograms for 3D object recognition and reconstruction. In conventional studies, various deep learning approaches to 3D recognition and construction have been attempted. VoxNet [Maturana and Scherer 2015] uses high number of parameters. Also, these methods require much complex networks.

We use computer generated holograms, they are the result of simulation of light interference between a coherent light source and point clouds of a 3D object. The resulted holograms are a 2D interference pattern with depth information which can be reconstructed...
We used a simple gradation representation method using a binary-weighted computer-generated hologram (CGH) [Fujiwara et al. 2017] to convert 3D PCD into binary hologram. This method uses multiple bit planes including binary weighted CGH with various pulse widths. The object point of the 3D object is assigned to multiple bit planes according to the gray level. Bit planes are sequentially displayed in a time division multiplexing manner. Therefore, the method realizes a gradation representation of the reconstructed 3D object.

2D CNN Architecture

Figure 1 shows the framework of 2D CNN. Our primary goal is to recognize a 3D point cloud data. We tackle the complication by proposing a CGH recognizing network based on some inception modules [Szegedy et al. 2015] that consist of three convolutional layers. The modules can be expected to have fewer spatially expanded clusters that can be covered by convolution over larger patches and that the number of patches will decrease over larger areas. DeepHolo has a simple structure of six inception modules followed by average pooling layers. At the end of the network, there are three fully connected layers and a sigmoid layer placed consecutively.

REFERENCES

